Package: ContRespPP 0.4.2

Victoria Sieck

ContRespPP: Predictive Probability for a Continuous Response with an ANOVA Structure

A Bayesian approach to using predictive probability in an ANOVA construct with a continuous normal response, when threshold values must be obtained for the question of interest to be evaluated as successful (Sieck and Christensen (2021) <doi:10.1002/qre.2802>). The Bayesian Mission Mean (BMM) is used to evaluate a question of interest (that is, a mean that randomly selects combination of factor levels based on their probability of occurring instead of averaging over the factor levels, as in the grand mean). Under this construct, in contrast to a Gibbs sampler (or Metropolis-within-Gibbs sampler), a two-stage sampling method is required. The nested sampler determines the conditional posterior distribution of the model parameters, given Y, and the outside sampler determines the marginal posterior distribution of Y (also commonly called the predictive distribution for Y). This approach provides a sample from the joint posterior distribution of Y and the model parameters, while also accounting for the threshold value that must be obtained in order for the question of interest to be evaluated as successful.

Authors:Victoria Sieck [aut, cre], Joshua Clifford [aut], Fletcher Christensen [aut]

ContRespPP_0.4.2.tar.gz
ContRespPP_0.4.2.zip(r-4.5)ContRespPP_0.4.2.zip(r-4.4)ContRespPP_0.4.2.zip(r-4.3)
ContRespPP_0.4.2.tgz(r-4.4-any)ContRespPP_0.4.2.tgz(r-4.3-any)
ContRespPP_0.4.2.tar.gz(r-4.5-noble)ContRespPP_0.4.2.tar.gz(r-4.4-noble)
ContRespPP_0.4.2.tgz(r-4.4-emscripten)ContRespPP_0.4.2.tgz(r-4.3-emscripten)
ContRespPP.pdf |ContRespPP.html
ContRespPP/json (API)
NEWS

# Install 'ContRespPP' in R:
install.packages('ContRespPP', repos = c('https://jcliff89.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jcliff89/contresppp/issues

Datasets:
  • exData - Example Continuous Response ANOVA Dataset.

On CRAN:

3.70 score 4 scripts 214 downloads 6 exports 0 dependencies

Last updated 2 years agofrom:de7f162c54. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:gibbs.samplergibbs.sampler.posteriorgibbs.sampler.posterior.rjagsgibbs.sampler.predictivegibbs.sampler.predictive.rjagsprob.creator

Dependencies:

Using the ContRespPP::gibbs.sampler Function

Rendered fromgibbs-sampler.Rmdusingknitr::rmarkdownon Nov 08 2024.

Last update: 2022-09-26
Started: 2022-01-14